Selberg’s zeta function and the spectral geometry of geometrically finite hyperbolic surfaces

نویسندگان

  • David Borthwick
  • Chris Judge
  • Peter A. Perry
  • DAVID BORTHWICK
  • PETER A. PERRY
چکیده

For hyperbolic Riemann surfaces of finite geometry, we study Selberg’s zeta function and its relation to the relative scattering phase and the resonances of the Laplacian. As an application we show that the conjugacy class of a finitely generated, torsion-free, discrete subgroup of SL(2, R) is determined by its trace spectrum up to finitely many possibilities, thus generalizing results of McKean [19] and Müller [22] to groups which are not necessarily cofinite.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the resolvent of the Laplacian on functions for degenerating surfaces of finite geometry

We consider families (Yn) of degenerating hyperbolic surfaces. The surfaces are geometrically finite of fixed topological type. Let Zn be the Selberg Zeta function of Yn, and let Z d n be the contribution of the pinched geodesics to Zn. Extending a result of Wolpert’s, we prove that Zn(s)/Z d n(s) converges to the Zeta function of the limit surface for all s with Re(s) > 1/2. The technique is a...

متن کامل

Analytical Analysis of The Dual-phase-lag Heat Transfer Equation in a Finite Slab with Periodic Surface Heat Flux (RESEARCH NOTE)

This work uses the dual-phase-lag (DPL) model of heat conduction to demonstrate the effect of temperature gradient relaxation time on the result of non-Fourier hyperbolic conduction in a finite slab subjected to a periodic thermal disturbance. DPL model combines the wave features of hyperbolic conduction with a diffusion-like feature of the evidence not captured by the hyperbolic case. For the ...

متن کامل

An Algorithm for the Computation of Eigenvalues, Spectral Zeta Functions and Zeta-determinants on Hyperbolic Surfaces

We present a rigorous scheme that makes it possible to compute eigenvalues of the Laplace operator on hyperbolic surfaces within a given precision. The method is based on an adaptation of the method of particular solutions to the case of locally symmetric spaces and on explicit estimates for the approximation of eigenfunctions on hyperbolic surfaces by certain basis functions. It can be applied...

متن کامل

Analysis and Geometry of Resonances /

• Viviane Baladi. The spectrum of Sinai billiard flows (Joint work with M. Demers and C. Liverani) Sinai billiard maps in dimension two have been proved to be exponentially mixing by L.-S. Young twenty years ago. Recent work of Demers and Zhang gives a spectral gap for their natural transfer operators on a suitable anisotropic Banach space. Understanding Sinai billiard flows is more difficult. ...

متن کامل

Hyperbolic surfaces of $L_1$-2-type

In this paper, we show that an $L_1$-2-type surface in the three-dimensional hyperbolic space $H^3subset R^4_1$ either is an open piece of a standard Riemannian product $ H^1(-sqrt{1+r^2})times S^{1}(r)$, or it has non constant mean curvature, non constant Gaussian curvature, and non constant principal curvatures.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008